
Quantum Computing: Quantum Gates

Rotation Gates:

RX(π) = X,     RY(π) = Y,     RZ(π) = Z,     RZ(π/2) = S,     RZ(π/4) = T

28



Quantum Computing: Quantum Gates

Tensor Product of One-qubit Gate:

The simplest way of obtaining a two-qubit gate is by having a pair of 
one-qubit gates A and B acting on each of the qubits
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Quantum Computing: Quantum Gates

Controlled-NOT (CNOT) gate:
The CNOT (or controlled-NOT or CX) gate is given by the (unitary) matrix

𝐶𝑋 =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

It uses convention qubits labelling: | ۧ𝑞1𝑞0 , i.e. |second qubit, first qubit>

If the first qubit is 0, then nothing changes, otherwise flip the second qubit:

| ۧ00 → | ۧ00 ,      | ۧ01 → | ۧ11 ,     | ۧ10 → | ۧ10 ,     | ۧ11 → | ۧ01

For convention | ۧ𝑞0𝑞1 , i.e. |first qubit, second qubit>, then

𝐶𝑋 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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Quantum Computing: Entanglement

A state | ۧ𝜓 is a product state if it can be written in the form
| ۧ𝜓 = | ۧ𝜓1 | ۧ𝜓2

where | ۧ𝜓1 and | ۧ𝜓2 are two states (of at least one qubit).

An entangled state is a state that is not a product state (cannot be
factored).

Example of entangled states are Bell states:
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Quantum Computing: Decoherence

1. Dan C. Marinescu, Gabriela M. Marinescu, Classical and Quantum Information, (2012)

2. Wang, P., Luan, CY., Qiao, M. et al. Single ion qubit with estimated coherence time exceeding one hour. Nat Commun 12, 233 (2021)
32

Decoherence is the interactions of a qubit with its environment which causes disturbances and collapse superposition.
The decoherence of a quantum system[1] is caused by thermodynamically irreversible interactions with the environment; it
represents the principal mechanism for the transition from quantum to classical behavior. The evolution of a quantum system
in contact with its environment is characterized by various decoherence times; each decoherence time is related to a
different degree of freedom of the system.
The decoherence times relevant for a quantum computer are associated with the degrees of freedom that characterize the
physical qubits; they also depend on the specifics of the qubits’ couplings to these degrees of freedom[1].
Some scientists achieved coherence time exceeds one hour[2].

Image source: https://iotpractitioner.com/quantum-computing-series-part-8-decoherence



Quantum Error Correction[1] can be used to prolong coherence length by 
correcting errors caused by decoherence.

1. Simon J Devitt et al., Quantum error correction for beginners. Rep. Prog. Phys. 76 076001 (2013)

Quantum Computing: Decoherence
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Image sourcehttps://medium.com/hackernoon/decoherence-quantum-computers-greatest-obstacle-67c74ae962b6



Quantum Computing: Quantum Volume

34



Quantum Computing
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Illustration of the qubit quality vs quantity relationship. (Image credit: John Martinis, Google)



Quantum Computing
Quantum circuit to create Bell states, and its quantum ‘truth table’.*

*Nielsen & Chuang, Quantum Computation and Quantum Information, 10th-Anniversary Edition, 2010, Cambridge University Press
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Quantum circuit to create Bell state using Qiskit (IBM-Q 2 qubits):
Algorithm:

1. Initialize both qubits:  𝑞0 ← | ۧ0 ,  𝑞1 ← | ۧ0

2. Apply Hadamard gate 𝐻 =
1

2

1 1
1 −1

on qubit 𝑞0, which puts it into a superposition state:

𝑞0 ← 𝐻𝑞0 = 𝐻| ۧ0 =
| ۧ0 + | ۧ1

2

3. Apply CNOT gate 𝐶𝑋 =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

on qubit 𝑞0, using control qubit 𝑞1, which puts both

qubits in an entangled state:

| ۧ𝜓 = 𝐶𝑋 𝑞1 ⊗𝑞0 = 𝐶𝑋 | ۧ0 ⊗
| ۧ0 + | ۧ1

2
=
| ۧ00 + |1 ۧ1

2

Quantum Computing
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Quantum circuit to create Bell state using Qiskit (IBM-Q 2 qubits):
Algorithm (cont’d):

4. Measure the qubits:

| ۧ𝜓 =
| ۧ00 + |1 ۧ1

2

The probability of the measurement output:

𝑃 ۧ00 =
1

2

2
=

1

2
,      𝑃 ۧ01 = 0 2 = 0 ,      𝑃 ۧ10 = 0 2 = 0 ,      𝑃 ۧ11 =

1

2

2
=

1

2

5. Repeated many times measurements of the system will result in approximately 50% of | ۧ00 state 
and 50% of | ۧ11 state.

Quantum Computing
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Hello Quantum World!   using Qiskit (IBM-Q 2 qubits):

Image credit:

IBM

Quantum Computing: Let’s Coding!
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Quantum Computing
Quantum circuit to create Bell state using Qiskit (IBM-Q 2 qubits):

output
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Quantum Artificial Intelligence
Quantum Machine Learning[1, 2]:

Using quantum computing resources for Machine Learning tasks

1. Biamonte, J., Wittek, P., Pancotti, N. et al. Quantum machine learning. Nature 549, 195–202 (2017)

2. Maria Schuld, Francesco Petruccione, Supervised Learning with Quantum Computers, Springer (2018) 41



An artificial neuron implemented on an actual quantum processor[1]:

1. Tacchino, F., Macchiavello, C., Gerace, D. et al. An artificial neuron implemented on an actual quantum processor. npj Quantum Inf 5, 26 (2019)

Quantum Artificial Intelligence: Example

42

Theoretical simulation of the algorithm for N = 4 qubits + 1 ancilla
Recognize a cross (or
its negative) out of a
training set of input
vectors:

(a) A sample of
training

(b) Average fidelity of
the quantum state
encoding the
learned pattern
with respect to the
target one,
obtained by
repeating the
learning procedure
500 times on the
same training set



Quantum Artificial Intelligence: Example
Quantum convolutional neural networks[1]:

1. Cong, I., Choi, S. & Lukin, M.D. Quantum convolutional neural networks. Nature Physics 15, 1273–1278 (2019) 43

𝑂(72𝑁(1 − 31−𝑑) + 31−𝑑𝑁) multi-qubit operations

𝑂(4𝑑) single-qubit rotations



Quantum Artificial Intelligence: Example
Training deep quantum neural networks[1]:

1. Beer, K., Bondarenko, D., Farrelly, T. et al. Training deep quantum neural networks. Nature Communications 11, 808 (2020) 44

Maximizing cost function C
0 (worst) ≤ C ≤ 1 (best)



Quantum Artificial Intelligence
Quantum Speedup for Unsupervised Learning*

*Aïmeur, E., Brassard, G. & Gambs, S. Quantum speed-up for unsupervised learning. Mach Learn 90, 261–287 (2013).
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Quantum Artificial Intelligence
Quantum Speedup for Some Supervised Learning[1, 2]

46

Method Speedup = 
𝑂Classical …

𝑂Quantum(… )

Quantum inference on Bayesian Networks[3, 4] 𝑂( 𝑛)

Online Perceptron[5] 𝑂( 𝑛)

Quantum algorithm for Least Square Fitting[6] 𝑂(log𝑛)

Classical Boltzmann machine using Gradient Estimation via Quantum Sampling 
(GEQS) & Gradient Estimation via Quantum Amplitude Estimation (GEQAE)[7] 𝑂( 𝑛)

Quantum Boltzmann machine[8, 9] 𝑂(log𝑛)

Quantum principal component analysis (PCA)[10] 𝑂(log𝑛)

Quantum support vector machine (SVM)[11] 𝑂(log𝑛)

Quantum reinforcement learning[12] 𝑂( 𝑛)



Quantum Artificial Intelligence
Quantum Speedup for Some Supervised Learning[1, 2]
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Roadmap of Google Quantum Computing

Image credits: H. Neven, Google Quantum Summer Symposium 2020
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Roadmap of Honeywell Quantum Computing

Image credits: Honeywell news post 51



Roadmap of IBM’s Scaling Quantum Technology

Image credits: https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap
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Image credits: https://ionq.com/posts/december-09-2020-scaling-quantum-computer-roadmap

Roadmap of Scaling IonQ's Quantum Computers
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